Computer Networks --- Basics of Computer Networks


What is a Computer Networks?

A computer network is a set of computers connected together for the purpose of sharing resources. The most common resource shared today is connection to the Internet. Other shared resources can include a printer or a file server. The Internet itself can be considered a computer network.

History of Computer networks

INTRO The first computer networks appeared in the 1950s and 60s.They were generally used within an organization like a company or research lab to facilitate the exchange of information between different people and computers. This was faster and more reliable than the previous method of having someone walk a pileof punch cards, or a reel of magnetic tape, to a computer on the other side of a building which was later dubbed a sneaker net. A second benefit of networks was the ability to share physical resources. For example, instead of each computer having its own printer, everyone could share one attached to the network. It was also common on early networks to have large, shared, storage drives, ones too expensive to have attached to every machine.

Basics of computer networks

These relatively small networks of close-by computers are called Local Area Networks,or LANs.A LAN could be as small as two machines in the same room, or as large as a university campus with thousands of computers. Although many LAN technologies were developed and deployed, the most famous and successful was Ethernet, developed in the early 1970s at Xerox PARC, and still widely used today.In its simplest form, a series of computers are connected to a single, common ethernet cable.
When a computer wants to transmit data to another computer, it writes the data, as anelectrical signal, onto the cable.Of course, because the cable is shared, every computer plugged into the network sees thetransmission, but doesn,t know if data is intended for them or another computer.To solve this problem, Ethernet requires that each computer has a unique Media Access Controladdress, or MAC address.This unique address is put into a header that prefixes any data sent over the network.So, computers simply listen to the ethernet cable, and only process data when they seetheir address in the header.This works really well; every computer made today comes with its own unique MAC addressfor both Ethernet and WiFi.The general term for this approach is Carrier Sense Multiple Access, or CSMA for short.The “carrier”, in this case, is any shared transmission medium that carries data – copperwire in the case of ethernet, and the air carrying radio waves for WiFi.
Bandwidth
Many computers can simultaneously sense the carrier, hence the Sense and Multiple Access, and the rate at which a carrier can transmit data is called its Bandwidth .Unfortunately, using a shared carrier has one big drawback. When network traffic is light, computers can simply wait for silence on the carrier, andthen transmit their data.But, as network traffic increases, the probability that two computers will attempt to write dataat the same time also increases.This is called a collision, and the data gets all garbled up, like two people trying totalk on the phone at the same time.Fortunately, computers can detect these collisions by listening to the signal on the wire.The most obvious solution is for computers to stop transmitting, wait for silence, then try again. Problem is, the other computer is going to try that too, and other computers on the network that have been waiting for the carrier to go silent will try to jump in during any pause.
This just leads to more and more collisions. Soon, everyone is talking over one another and has a backlog of things they need to say, like breaking up with a boyfriend over a family holiday dinner. Terrible idea! Ethernet had a surprisingly simple and effective fix. When transmitting computers detect a collision, they wait for a brief period before attempting to re-transmit. As an example, let’s say 1 second. Of course, this doesn’t work if all the computers use the same wait duration – they’ll just collide again one second later. So, a random period is added: one computer might wait 1.3 seconds, while another waits1.5 seconds. With any luck, the computer that waited 1.3 seconds will wake up, find the carrier to be silent, and start transmitting. When the 1.5 second computer wakes up a moment later, it’ll see the carrier is in use,  will wait for the other computer to finish. This definitely helps, but doesn’t totally solve the problem, so an extra trick is used. As I just explained, if a computer detects a collision while transmitting, it will wait1 second, plus some random extra time. However, if it collides again, which suggests network congestion, instead of waiting another1 second, this time it will wait 2 seconds. If it collides again, it’ll wait 4 seconds, and then 8, and then 16, and so on, until successful. With computers backing off, the rate of collisions goes down, and data starts moving again, freeing up the network. Family dinner saved! This backing off behaviour using an exponentially growing wait time is called Exponential Back off. Both Ethernet and WiFi use it, and so do many transmission protocols. But even with clever tricks like Exponential Back off, you could never have an entire university, sworth of computers on one shared Ethernet cable.
To reduce collisions and improve efficiency, we need to shrink the number of devices on any given shared carrier -- what,s called the Collision Domain. Let go back to our earlier Ethernet example, where we had six computers on one shared cable,a.k.a. one collision domain.To reduce the likelihood of collisions, we can break this network into two collisiondomains by using a Network Switch.It sits between our two smaller networks, and only passes data between them if necessary. It does this by keeping a list of what MAC addresses are on what side of the network.So if A wants to transmit to C, the switch doesn,t forward the data to the other network– there,s no need.This means if E wants to transmit to F at the same time, the network is wide open, andtwo transmissions can happen at once.But, if F wants to send data to A, then the switch passes it through, and the two networksare both briefly occupied.This is essentially how big computer networks are constructed, including the biggest oneof all – The Internet – which literally inter-connects a bunch of smaller networks,allowing inter-network communication.What,s interesting about these big networks, is that there,s often multiple paths toget data from one location to another.And this brings us to another fundamental networking topic, routing.The simplest way to connect two distant computers, or networks, is by allocating a communicationline for their exclusive use.This is how early telephone systems worked.For example, there might be 5 telephone lines running between Indianapolis and Missoula.If John picked up the phone wanting to call Hank, in the 1910s, John would tell a humanoperator where he wanted to call, and they,d physically connect John,s phone line intoan unused line running to Missoula.For the length of the call, that line was occupied, and if all 5 lines were alreadyin use, John would have to wait for one to become free.This approach is called Circuit Switching, because you,re literally switching wholecircuits to route traffic to the correct destination.It works fine, but it,s relatively inflexible and expensive, because there,s often unusedcapacity.On the upside, once you have a line to yourself – or if you have the money to buy one foryour private use – you can use it to its full capacity, without having to share.For this reason, the military, banks and other high importance operations still buy dedicatedcircuits to connect their data centers.Another approach for getting data from one place to another is Message Switching, whichis sort of like how the postal system works.Instead of dedicated route from A to B, messages are passed through several stops.So if John writes a letter to Hank, it might go from Indianapolis to Chicago, and thenhop to Minneapolis, then Billings, and then finally make it to Missoula.Each stop knows where to send it next because they keep a table of where to pass lettersgiven a destination address.What,s neat about Message Switching is that it can use different routes, making communicationmore reliable and fault-tolerant.Sticking with our mail example, if there,s a blizzard in Minneapolis grinding thingsto a halt, the Chicago mail hub can decide to route the letter through Omaha instead.In our example, cities are acting like network routers.The number of hops a message takes along a route is called the hop count.Keeping track of the hop count is useful because it can help identify routing problems.For example, let,s say Chicago thinks the fastest route to Missoula is through Omaha,but Omaha thinks the fastest route is through Chicago.That's bad, because both cities are going to look at the destination address, Missoula,and end up passing the message back and forth between them, endlessly.Not only is this wasting bandwidth, but it,s a routing error that needs to get fixed!This kind of error can be detected because the hop count is stored with the message andupdated along its journey. If you start seeing messages with high hop counts, you can bet something has gone awryin the routing!
This threshold is the Hop Limit. A downside to Message Switching is that messages are sometimes big.So, they can clog up the network, because the whole message has to be transmitted from one stop to the next before continuing on its way. While a big file is transferring, that whole link is tied up. Even if you have a tiny, one kilobyte email trying to get through, it either has to wait for the big file transfer to finish or take a less efficient route. That’s bad. The solution is to chop up big transmissions into many small pieces, called packets. Just like with Message Switching, each packet contains a destination address on the network, so routers know where to forward them. This format is defined by the Internet  Protocol, or IP for short, a standard created in the 1970s.Every computer connected to a network gets an IP Address. You’ve probably seen these as four, 8-bit numbers written with dots in between. For example,172.217.7.238 is an IP Address for one of Google’s servers. With millions of computers online, all exchanging data, bottlenecks can appear and disappear in milliseconds. Network routers are constantly trying to balance the load across whatever routes they know to ensure speedy and reliable delivery, which is called congestion control. Sometimes different packets from the same message take different routes through a network. This opens the possibility of packets arriving at their destination out of order, which isa problem for some applications. Fortunately, there are protocols that run on top of IP, like TCP/IP, that handle this issue. We’ll talk more about that next week.

 Chopping up data into small packets, and passing these along flexible routes with spare capacity, is so efficient and fault-tolerant, it’s what the whole internet runs on today. This routing approach is called Packet Switching. It also has the nice property of being decentralized, with no central authority or single point of failure. In fact, the threat of nuclear attack is why packet switching was developed during the cold war! Today, routers all over the globe work cooperatively to find efficient routings, exchanging information with each other using special protocols, like the Internet Control Message Protocol (ICMP)and the Border Gateway Protocol (BGP).The world’s first packet-switched network, and the ancestor to the modern internet, was the ARPANET, named after the US agency that funded it, the Advanced Research Projects Agency. Here’s what the entire ARPANET looked like in 1974.Each smaller circle is a location, like a university or research lab, that operateda router. They also plugged in one or more computers – you can see PDP-1,s, IBM System 360s,and even an ATLAS in London connected over a satellite link. Obviously the internet has grown by leaps and bounds in the decades since. Today, instead of a few dozen computers online, it’s estimated to be nearing 10 billion. And it continues to grow rapidly, especially with the advent of wifi-connected refrigerators and other smart appliances, forming an internet of things. So that’s part one – an overview of computer networks. Is it a series of tubes? Well, sort of. Next week we’ll tackle some higher-level transmission protocols, slowly working our way up to the World Wide Web. I’ll see you then!

Comments

Popular posts from this blog

CPU-Scheduling-Scheduler-CPU-I/O Burst Cycle